零是不是有理数?
综述:是的。 0是有理数。有理数是整数,包括正整数、0、负整数和分数的统称,是整数和分数的集合。0是介于-1和1之间的整数。是最小的自然数。0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0。 有理数简介: 有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。 整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 以上内容参考 百度百科-有理数
0为什么不属于有理数?
0是有理数。 有理数是整数,包括正整数、0、负整数和分数的统称,是整数和分数的集合。0是介于-1和1之间的整数。是最小的自然数。 0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0。 加法运算: 1、同号两数相加,取与加数相同的符号,并把绝对值相加。 2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 3、互为相反数的两数相加得0。 4、一个数同0相加仍得这个数。 5、互为相反数的两个数,可以先相加。 6、符号相同的数可以先相加。 7、分母相同的数可以先相加。 8、几个数相加能得整数的可以先相加。
0是有理数还是无理数
0是有理数。 0是介于-1和1之间的整数,既是最小的自然数,也是有理数;通常我们把能够写成分数形式称为有理数,不是有理数的实数称为无理数。 命名由来 “有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。 中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。 所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
0是有理数吗?
是有理数。 数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b,0也是有理数,整数也可看作是分母为一的分数,有理数的小数部分是有限或为无限循环的数,不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。 有理数是指整数和分数的统称,0是整数,所以0是有理数,有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 扩展资料: 正整数和正分数合称为正有理数,负整数和负分数合称为负有理数,因而有理数集的数可分为正有理数、负有理数和零,由于任何一个整数或分数都可以化为十进制循环小数,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。 有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a,任何两个不相等的有理数都可以比较大小,有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。 有理数是实数的紧密子集,每个实数都有任意接近的有理数,一个相关的性质是,仅有理数可化为有限连分数,依照它们的序列,有理数具有一个序拓扑,有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。 参考资料来源:百度百科—有理数